Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Da-Quan Peng

Department of Chemistry, Chongqing Normal University, Chongqing 400047, People's
Republic of China

Correspondence e-mail:
pengdq_cqnu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.056$
$w R$ factor $=0.156$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Methyl-4-phenyl-2-(trimethylsilyloxy)-3,4-di-hydro-2H-naphtho[2,3-b]pyran-5,10-dione

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Si}$, the naphthalene ring system is essentially planar. The conformation of the dihydropyran ring is very similar to a half-chair form. There are intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and $\pi-\pi$ stacking interactions in the crystal structure.

Comment

o-Quinone methides constitute a class of highly reactive intermediates and their cycloaddition chemistry has attracted considerable interest (Nair et al., 2001). In our ongoing studies on the cycloaddition reactions of o-quinone methides, we have prepared the title compound, (I), which is obtained from the cycloaddition reaction between o-quinone methides derived from 2-hydroxy-1,4-naphthoquinone and an excess amount of trimethyl[(1-methylethenyl)oxy]silane. As part of this study, we have undertaken the X-ray crystallographic analysis of (I) in order to elucidate the conformation and configuration of this cycloadduct product.

The bond lengths and angles in (I) (Fig. 1) are in good agreement with expected values (Allen et al., 1987). The phenyl ring at C 7 is pseudo-axial to the pyran ring. The conformation of the pyran ring is very similar to a half-chair form.

The naphthalene ring system is essentially planar, with atom C14 deviating from the mean plane by 0.140 (4) \AA. The dihedral angle between the naphthalene ring system and the phenyl ring C8-C13 is 76.8 (2) ${ }^{\circ}$.

In the crystal structure, no classical hydrogen bonds were found, but there is an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 1). The crystal packing is also stabilized by $\pi-\pi$ stacking interactions (Table 2) between neighbouring naphthoquinone units.

Experimental

Under argon, a mixture of 2-hydroxy-1,4-naphthoquinone, 3 equivalents of trimethyl[(1-methylethenyl)oxy]silane and an excess amount of benzaldehyde were suspended in dry dioxane and refluxed

Received 1 July 2006
Accepted 19 September 2006
\qquad
for about 20 h . Compound (I) was isolated in 24% yield by column chromatography of the reaction mixture on silica gel after evaporation of the solvent. Single crystals of (I) were obtained by slow evaporation of a petroleum ether-ethyl acetate $(3: 1 \mathrm{v} / \mathrm{v})$ solution of (I).

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Si}$
$M_{r}=392.51$
Monoclinic, $P 2_{1} / c$
$a=12.699(3) \AA$
$b=11.342(2) \AA$
$c=15.023(3) \AA$
$\beta=92.44(3)^{\circ}$
$V=2161.8(8) \AA^{\circ}$
Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(XCAD4; Harms \& Wocadlo,
1995)
$T_{\text {min }}=0.932, T_{\text {max }}=0.957$
4407 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right. \\
& +1 P]
\end{aligned}
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$
$S=1.00$
4215 reflections
253 parameters
H -atom parameters constrained

$Z=4$

$D_{x}=1.206 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.40 \times 0.35 \times 0.33 \mathrm{~mm}$

4215 independent reflections
2140 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections every 200 reflections intensity decay: none

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.47	$3.343(5)$	151

Symmetry code: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.

Table 2
$\pi-\pi$ interactions $\left(\AA,{ }^{\circ}\right)$..

$C g I$	$C g J$	Symmetry code	$C g \cdots C g$	Dihedral angle	Interplanar distance	Offset
A	A	$-x, 2-y,-z$	$3.868(2)$	$0.0(2)$	$3.358(3)$	1.92

$C g(A)$ denotes the centroid of the aromatic ring C16-C21. The offset is defined as the distance between $C g(I)$ and the perpendicular projection of $C g(J)$ on ring I.

H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93,0.96,0.97$ and $0.98 \AA$ for aromatic, methyl, methylene and methine H atoms, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (aromatic, methylene and methine C) or $1.5 U_{\mathrm{eq}}$ (methyl C).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The crystal packing of (I), viewed approximately down the a axis.

This work was supported by the National Natural Science Foundation of China (NSFC, No. 20572044). Partial support by the Modern Analytical Center at Nanjing University is also gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Nair, V., Jayan, C. N., Radhakrishnan, K. V., Anikumar, G. \& Rath, N. P. (2001). Tetrahedron, 57, 5807-5813.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

